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We present a study of sediment transport in the creeping and saltation regimes. In our model, a bed of
particles is simulated with the conventional event-driven method. The particles are considered as hard disks in
a two-dimensional domain with periodic boundary conditions in the horizontal direction. The flow of the fluid
over this bed of particles is modeled by imposing a force on each particle that depends on the velocity of the
fluid at its height above the bed. We consider two velocity profiles for the fluid, parabolic and logarithmic. The
first one models laminar flow and the second corresponds to turbulent flow. For each case we investigate the
behavior of the saturated flux. We find that for the logarithmic profile, the saturated flux shows a quadratic
increase with the strength of the flow, and for parabolic profile, a cubic increase. The velocity distribution
functions are used to interpret the results.
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I. INTRODUCTION

The study of the transport of granular material by a fluid
is important for industrial processes as well as for the under-
standing of natural phenomena. Modeling of the sediment
transport in rivers, as well as modeling of sand drift in the
formation of dunes, will benefit from this study.

Saltation, surface creep, and suspension are three modes
which occur during transportation of granular material by a
fluid �1�. When the shear velocity of the fluid flowing over a
bed of grains exceeds the friction threshold velocity for sand
transport, the grains are driven by the fluid. At first they
begin to move while remaining in continual contact with
each other, yet it could happen that every now and then due
to collisions, some particles jump by a distance of order of
their diameter. This regime is called surface creep or repta-
tion. As the fluid shear velocity increases, the particles can
follow paths that take them to a height much larger than their
diameter; this regime is called saltation. The grains in salta-
tion have been named saltons, and the grains in creeping
motion have been named reptons �2�. Sediment transport as
bed load usually moves in one of these two ways. Suspen-
sion occurs at very high shear velocities, when a consider-
able fraction of the particles are transported upwards by tur-
bulent eddies. In this regime, the grains move in the fluid for
long periods of time, hardly colliding with the bed or each
other. Except for dust storms in which suspension is domi-
nant, creeping and saltation usually play the key role in dune
formation �3�. In many of the experimental studies of sedi-
ment transport, grains are transported by air �1,3,4�, but a
few experiments in water also exist �5,6�.

Improvement in the modeling of sediment transport under
the influence of a shear flow requires knowing the details of
the grain trajectories. A few attempts have been made to
derive a set of theoretical equations describing the trajecto-
ries of saltating grains. Each model has made some simpli-
fications in solving the equations. Some authors �1,7� assume
that the initial velocity of a saltating particle is vertical and
proportional in magnitude to the shear velocity; this assump-

tion is proper for high shear velocity. Ungar and Haff �8�
suppose that for a given impact velocity a certain number of
particles are ejected from the surface, all having the same
ejection velocity. This velocity is constant and independent
of shear velocity. In other theoretical work Wiberg and Smith
�9� combine the equations of motion for a grain and those for
the local fluid flow. This gives a set of equations that can be
solved numerically to derive the trajectory of the grain with
time. This model uses a minimal set of empirical constants
and gives good agreement with the measured trajectory.
Their model also derives the initial ejection velocity. How-
ever, this model is restricted to the motion of a single grain
over a fixed bed. The authors �9� approximate bed load trans-
port by averaging over saltating grains which move on a
fixed rough bed. Thus it does not include the effect of colli-
sions between moving particles. To avoid these restrictions
Jiang and Haff �10� present a model to follow the trajectories
of each of the moving particles over a two-dimensional bed.
The fluid is modeled as a moving layer or slab which exerts
a velocity dependent drag force on the embedded grains.
However, the slab model does not consider the detailed ver-
tical velocity structure and just the upper particles experience
the effect of the slab.

In the present study we investigate sediment transport for
the case that a fluid with a certain velocity profile flows over
a bed initially at rest. The motion of the particles is caused
by aerodynamic entrainment or collisions with other par-
ticles. We do not apply any restriction to the initial velocity
of the grains. The bed is not fixed and we can follow the
trajectory of the grains with time; their collisions with each
other and with the moving bed are also included.

To gain insight into the problem of the sediment transport,
it is important to understand the relation between the flux of
the grains, bed-load transport rate, and the velocity profile of
the fluid. An application of the study of sand flux is in geo-
morphology where it becomes necessary to calculate the ero-
sion rate in order to predict the evolution of a free sand
surface or a dune. In most instances of sediment transport,
the flux eventually saturates at a certain strength or ampli-
tude u� of the velocity profile v�y�=u�f�y�. Here, f is a func-
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tion of height y. There has been a great effort to obtain ex-
perimentally �1,4,11�, and theoretically �1,7,8,12,13� the
relationship between the saturated granular flux over a bed
and the shear velocity. Bagnold �1� was first to introduce a
simple flux law, a cubic relation, expressing the dependence
of sand flux on the shear velocity. Apart from the work by
Ungar and Haff all the above theoretical studies give similar
results; the saturated flux q scales at large shear velocity
similar to the Bagnold description and vanishes below a
threshold value. The model given by Ungar and Haff predicts
that the flux increase is slower than u�

3. Almeida et al. �14�
also obtain numerically a quadratic relation near the thresh-
old shear velocity. Most of these studies analyze only the
longitudinal, down-stream component of particle displace-
ment, and neglect any lateral movement. Lateral motion of
grains will be important in studying the grain trajectory in
the intermediate range and in studying the diffusion of sal-
tating particles �15�. Although much work has been devoted
to the sediment transport, the problem of predicting the bed-
load transport, that is the main practical quantity of interest,
is as yet not satisfactorily studied for either of turbulent or
laminar flows.

The goal of our paper is to find the dependence of the flux
on shear velocity u� for a system that has a transition from
creep to saltation. We consider two velocity profiles for the
fluid, logarithmic and parabolic. Although there are studies
for the logarithmic profile, we do not know of similar studies
for the parabolic profile. In fact, most of the existing data are
for turbulent flows, but some experiments on dynamics of a
bed of particles sheared by laminar flow also exist �16�. We
did not restrict ourselves to only saltation as most of the
previous models; nor only to creep. The only model that
considers two types of particles in transport, saltons and rep-
tons, has been proposed by Andreotti �17� in which the dy-
namical mechanisms governing the saturation of the sand
flux were investigated.

We emphasize that for the purposes of this study, saltation
has a different meaning than its standard usage. For instance,
in a wind tunnel, a grain is in saltation if its trajectory is at
least about 300 grain diameters high and at least 1000 grain
diameters across. These are much larger than the size of the
system considered here. Yet, we use this term to distinguish
the motion from the situation where the grains constantly
touch each other as they move. Saltation is then used to
mean a motion where the grains jump and follow a trajec-
tory, albeit smaller than mentioned above.

The structure of the paper is as follows. In Sec. II we
introduce the model. Then in Sec. III, we study the behavior
of the flux as a function of the velocity profile, as well as the
velocity distribution functions for the grains and compare the
velocity distributions for the two profiles. Finally, we present
our conclusions as Sec. IV.

II. SIMULATION MODEL

We use the inelastic hard sphere model �18�. Grains are
contained in a two-dimensional rectangular domain with pe-
riodic boundary conditions in the horizontal directions. The
fluid flows over the bed of grains, so grains can be entrained

by the fluid. The fluid is modeled by its velocity profile.
The grains, modeled as disks, move under the influence of

both gravity and a drag force that is exerted on them by the
fluid. To avoid crystallizations, 20% of the particles have a
diameter equal to 0.6l0 and the rest have a diameter equal to
0.5l0, where l0 is the unit of length used throughout this
paper �19�. Although this implies that particles would have
different mass, we suppose that particles have the same
mass. We make this choice because this difference in size is
not intended to model different particle sizes, but merely to
prevent crystallization. A gravitational acceleration of 12l0 / t0

2

is applied to all the particles, where t0 is the unit of time.
In all cases studied, the system starts out having six layers

of particles resting fairly compactly on each other. The fluid
stands at a height that is equivalent to thirty two layers 16l0.
This height is the maximum attainable by the grains; because
in our modelization we implement a reflecting boundary at
the top so that the particles that touch it just reverse their
vertical velocity component. The system is sketched in
Fig. 1.

A. Particle motion

We use event-driven MD �20� to calculate the motion of
the particles. As the particles are hard spheres, collisions take
infinitesimal time and involve only two particles. Conserva-
tion of momentum for two spherical particles with masses m1
and m2 leads to

u�1,2 = v�1,2 � �1 + r�
m2,1

m1 + m2
�K̂ · �v�1 − v�2��

�K̂ �
2

7
�1 + ��

m2,1

m1 + m2
�t̂ · �v�1 − v�2��t̂ , �1�

where u� indicates the velocities after the collision and v� de-
notes the velocities before the collision. The geometry of the

collision is described by K̂, a unit vector pointing from the
center of particle 1 toward the center of particle 2, and t̂ is
the unit vector in tangential direction. The energy dissipation
is controlled by r, the normal restitution coefficient, and �,
the tangential restitution coefficient. If r=1 and �= �1, col-
lisions conserve energy and are said to be elastic. For
0�r�1 or −1���1 energy is dissipated and the collisions
are inelastic. In our simulations, r=0.4 and �=−1.

We assume that the particles neither rotate nor roll on
each other. This is in accord with the fact that the sand grains

FIG. 1. The schematic representation of the system showing the
particles in their initial state, and the velocity field at different
places along the y axis.
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are not round so that rolling is difficult. For saltons the mean
waiting time, that is the time between two consecutive colli-
sions, is about 0.02t0 �the mean velocity of the saltating
grains is about 15 so that during this time a particle in salta-
tion would travel 0.3l0 compared to 0.5l0 which is the diam-
eter of the grain�. As the particles are small the vertical gra-
dient of force across the diameter of the particles is small and
creates a small torque on particles. The rotation of a particle
under this torque during the time mentioned is negligible.
The ratio of the kinetic energy of rotation to the kinetic en-
ergy of translation of the grains is about 0.001. The reptons
that just move over the bed, have very small energy. They
cannot eject other particles from the bed so they cannot af-
fect the granular bed whether they rotate or not. So we can
neglect their rotation.

In using the event-driven method there are two problems
in setting up the bed of grains: inelastic collapse and creating
a rough surface on the bottom. All particles after some col-
lisions lose their energy and accumulate on the bottom and
make a dense network of grains. So the number of collisions
per unit time will diverge at finite time; that is, inelastic
collapse �21� will occur. Because of the finite precision of the
computer, multiparticle collisions can occur. For handling the
inelastic collapse we use the Tc model with tc=10−6t0 �21�.

In order to create a rough surface, r and � are adjusted for
collisions between the grains and the surface. We suppose
that when a particle of the bottom layer bounces against the
bottom plate both the tangential and normal components of
its velocity are reversed, i.e., r=1 and �=1 in Eq. �1�. In this
way, the first layer is nearly fixed and acts as a rough surface
over which other particles can move. The roughness is of the
order of the particle diameter.

B. Effect of fluid on the grains

The drag force is proportional to the difference between
the particle velocity u�p and the fluid velocity u� f:

F� = ��u� f − u�p� , �2�

where � is a parameter that depends on the characteristics of
both the fluid and the grains. In laminar flow with small
Reynolds number �=3�	dp, in which 	 is the viscosity of
the fluid and dp is the diameter of the particle. We suppose
that �=1 for laminar flow. However in turbulent flow, the
fluid drag varies as the square of the grain speed and � can
be written as

� =
3CD
 f

4
pdp
�u� f − u�p� , �3�

which corresponds to the Newtonian drag force per unit par-
ticle mass where CD is taken from empirical relations and 
 f
and 
p are the density of the fluid and particle, respectively.

In general, the drag force acts on upper layers of the bed
of particles and drops to zero for lower layers. The details
depend on the velocity profile considered. Here, we study the
dynamics of the grains for two velocity profiles: logarithmic
and parabolic. The parabolic profile models laminar flow in
inclined open channels driven by gravity and without a

streamwise pressure gradient. In this case, the fluid velocity
is

uf = u��y0�y0/2 − h� − y�y/2 − h�� , �4�

where h is the height of fluid in channel. This equation is
written so that it satisfies the two boundary conditions
�uf /�y=0 at y=h and uf =0 at y=y0. Here, y is the vertical
coordinate and y0=0.5l0 is the height below which the effect
of the fluid on the grains is negligible. Indeed, The first term
of the Eq. �4� is an offset which means that the zero of the
profile is inside of the granular bed. This is so because there
is also a certain flow of fluid through the packing beneath the
surface. The slope of the channel is very small, just enough
to drive the flow.

In turbulent flow, the velocity profile of the fluid near the
boundary is observed to be logarithmic �22�, and described
by

uf =
u�

k
ln�y/y0� , �5�

where k is the von Karman constant and u� is the shear
velocity that is defined as u�= ��b /
�1/2, where �b and 
 are
the bottom shear stress and fluid density, respectively. Al-
though this relationship has been derived only for the region
where the shear stress is approximately constant, experi-
ments show that the agreement persists through almost all of
the boundary layer. In our simulations y0=0.5l0. We consider
no vertical component to the fluid velocity. The vertical com-
ponent of fluid velocity is small compared to the mean for-
ward velocity over the ground at low height. It may be im-
portant in the study of the suspension regime.

For the purposes of the present study it is reasonable to
neglect the effect of particles on the fluid, since in our system
most of the particles stay on the ground or are close to it. At
the same time the saltation is very low and weak, so we can
include the feedback in our shift of the zero of the profile
�which we discussed above�. An estimate which again points
to the same conclusion is provided by the ratio of the mo-
mentum flux of the grains to that of the fluid. In steady state
we find this to vary from 3% at the smallest u� in our study
to about 20% at the highest u� studied. This implies that in
studying the creep regime as well as the onset of saltation,
neglecting the feedback is a reasonable approximation.

III. GRANULAR FLUX AND VELOCITY PROBABILITY
DISTRIBUTION FUNCTION

First we investigate the behavior of the granular flux with
respect to time. Granular flux is the total amount of material
transported by the flow, or the average number of particles
per unit time that cross a surface perpendicular to the flow. In
two dimensions, one can simply determine the rate at which
particles cross a vertical line. If this quantity is averaged over
the entire domain, one obtains

q =
1

L
�
i=1

N

ui, �6�

where L is the length of the box and N is the total number of
particles.
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After some time the flux fluctuates around a constant,
steady value, and sediment transport reaches steady state.
This steady state is the saturated flux, and it depends on the
shear velocity, denoted by u�.

For calculating the saturated flux value, we average over
the flux only after the steady state has been reached. We
expect to have a threshold velocity ut, below which sediment
transport cannot happen.

In order to determine the evolution of the particle velocity
we study the velocity probability distribution function
�PDF�. The range of velocities is divided into intervals of
width 0.2. When the system reaches steady state, we count
the particles whose velocity lies within each interval; this
makes up the PDF at that time. Then we repeat this for 2500
times at intervals of 0.01t0, and finally we arrive at the steady
state PDF by averaging over the 2500 PDFs found.

A. Logarithmic profile

In the Aeolian case, the logarithmic velocity profile is
more realistic than the parabolic profile. When the wind
blows over a rough surface, its velocity within the boundary
layer increases logarithmically with height as in Eq. �5�. The
logarithmic profile has also been observed experimentally,
for water moving over a rough surface in a channel �5,6�.

Figure 2 shows the variation of flux with time for differ-
ent values of shear velocity u�. This figure shows that flux
reaches steady state and saturates after some transient.

The simulations could be made into movies of the grain
motion. This was a particularly useful way of interpreting the
results. In this way we estimate that grain motion starts at a
threshold velocity of about u�=ut=1. As u� increases above
the threshold, the top layer particles begin to roll in their own
layer or jump to a height about their diameter. This situation
continues until u��15. This means that for u��15 most of
the particles except those in the bottom layer are in the
creeping regime. After u��15 the shear stress is enough to
make some of the particles in the upper layers enter the sal-
tation regime. With increasing u�, the number of saltating
particles increases, resulting in an increase in the number of

collisions between saltons. We estimate u��15 as marking
the onset of saltation in this system. When u��30 enough
particles have so high an energy that they move with the
fluid stream above the other particles and have few collisions
with each other or the rest of the grains. In this case the
length of their trajectory becomes comparable to the system
size, hence we only considered u��30. We wish to empha-
size again that we are using the term saltation in a restricted
sense in this study.

The main objective of this study is to relate the saturated
flux and the shear velocity in the regime of saltation. In Fig.
3 we show the mean particle flux as a function of u�.

Theoretically, perhaps the most important description for
saturated flux is due to Bagnold �1�. He found that the satu-
rated flux at large shear velocities is given by

q =

air

g
u�

3. �7�

Bagnold considered a mean trajectory for each grain, and
supposed that the ejection velocity of grains from the bed
scales with the shear velocity u�. This hypothesis is valid if
the shear velocity is large enough. For small shear velocities,
Ungar and Haff �8� supposed that height and length of the
trajectory of grains is of the same order as the grain size, and
predicted that

q 
 
air�u�
2 − ut

2��d

g
, �8�

where d is the grain diameter. In their numerical study
Almeida et al. �14� also found numerically a quadratic de-
scription for the flux near the threshold shear velocity

q 
 �u� − ut�2. �9�

They simulated the saltation inside a two-dimensional chan-
nel with a mobile top wall. Their model solves the turbulent
wind field including the feedback from the dragged particles.

Our results show a slightly different quadratic dependence
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q = a�u� − ut��u� + b� , �10�

where a=0.2, b=43.9, and ut=1.09 are obtained from fitting
Eq. �10� to our data. This value for the threshold velocity is
in good agreement with the estimate from the simulations;
that is ut=1. Figure 3 shows the fit of Eq. �10� to the data.
This indicates that the same quadratic function describes the
behavior of flux reasonably well in both the creeping and
saltating regimes. Equation �10� predicts a stronger depen-
dence on shear velocity than Eq. �9�. One reason may be our
neglect of the feedback of the grains on the fluid. This effect
is more prominent at small heights where the particle veloc-
ity differs much from the fluid velocity �14�.

Another way to estimate the onset of saltation is to inves-
tigate the grain longitudinal velocity �u� probability distribu-
tion function. The distribution function allows decomposi-
tion of the flux into a part due to saltation and another part
due to creep. This interpretation is based on the fact that the
reptons are slower than the saltons. Figure 4 shows the be-
havior of the grain longitudinal velocity distribution for dif-
ferent values of u�.

For small values of u� there is a large peak at small ve-
locities that shows that all of the particles are in creeping
motion. With increasing u�, the velocity of the particles in-
creases and some of the particles enter the saltation regime.
The uniform distribution function at higher velocities repre-
sents the saltons. For example, at u�=15 many particles are
saltons; the velocity distribution develops a minimum at u
	2. At u�	20 all of particles are saltating.

The distribution of the transverse �vertical� velocity w of
the grains is also investigated. The PDF of w is shown in Fig.
5 for different u�. When most of the particles are saltating it
is close to a Gaussian with zero mean. At the onset of creep,
it deviates from a Gaussian because most of the particles are
at rest. At higher shear velocities, the transverse velocities
fluctuate around zero because of collisions between moving
particles. As we will see in the next section, the PDF of the
transverse velocity for parabolic profile of the fluid is also a
Gaussian. There is small drag due to vertical motion of par-
ticles with respect to the fluid, similar to the transverse �ra-

dial� motion of particles in Charru et al. �16�. Charru et al.
also observe a Gaussian PDF in the transverse direction.

The Gaussian distribution implies that the system acts as
if it were in equilibrium in the transverse direction. So, a
granular temperature proportional to 
w2� for random motion
in transverse direction can be defined. As Fig. 5 shows, this
temperature increases with u�.

B. Parabolic profile

At low Reynolds numbers when a fluid flows in a sloping
open channel, its velocity varies with height parabolically.
Now, we consider a velocity profile as in Eq. �4�, that is zero
at the bottom and increases parabolically with height.

Figure 6 shows the behavior of flux as a function of time.
Similar to the logarithmic profile, the flux reaches steady
state, only now the transient time is longer. In the parabolic
profile, the shear stress above the bed is greater than the
logarithmic profile and increases rapidly with u�, so com-
pared to the logarithmic case, the range of u� that defines the
creep motion is much narrower.

The motion starts out at about ut=0.08 �23�; this is an
estimate obtained from our simulations. When u�=1 the sys-

0
0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
0

0 0 0 0

u

P
D

F

10 20 30 40
0

5

10

u*=2
u*=5
u*=8
u*=12
u*=15
u*=200

FIG. 4. The grain longitudinal velocity probability distribution
function for different values of u� for the logarithmic profile.

o o
o

o
o

oo o
ooo

o
o

o o
o o

o o o
o

w

P
D

F

-4 -2 0 2 4

0.2

0.4

0.6

0.8 u*=5
u*=8
u*=12
u*=20o

FIG. 5. The grain transverse velocity probability distribution
function for different values of u� for the logarithmic profile.

0

50

100

150

200

250

300

0 5 10 15 20 25 30

fl
u

x

t

u
*
=0.5

u
*
=0.8

u
*
=1

FIG. 6. Flux as a function of time for a parabolic profile.

SEDIMENT TRANSPORT IN THE SALTATION REGIME PHYSICAL REVIEW E 78, 011301 �2008�

011301-5



tem is out of the creeping regime, and starts saltating. The
surface y=h is as before a reflecting surface, so any particle
that reaches it bounces back into the fluid. This starts at
about u�=1.2. Beyond u�=1.5, all particles are in the salta-
tion regime. In Fig. 7 we show the mean flux vs u�. As
observed beyond u�=2.5 this boundary produces a kind of
population inversion and the collision of particles with each
other effectively reduces the rate of increase of flux.

In Fig. 8 we show the behavior of the mean flux with u�

�near ut�. For u��1 we fitted the data with two equations
below:

q = a��u� − b��2, �11�

q = a�u� − 0.08��u�
2 + bu� + c� . �12�

The values of a�=258, a=182, b=−0.07, c=0.5, and b�
=0.036 are obtained from fitting. In Eq. �12�, ut=0.08 is used

as an input data. The cubic equation is clearly a better fit to
the data than the quadratic one.

Let us compare the logarithmic and parabolic profiles us-
ing the grain velocity distribution functions. With increasing
shear we expect to have more and more particles in motion.
The probability distribution function of longitudinal velocity,
develops a peak at low velocities u	2 that gradually disap-
pears as u� increases. In case of the logarithmic profile, Fig.
4, this peak does not broaden. With the diminishing of this
low-energy peak, a plateau is developed in the velocity dis-
tribution. This plateau which gradually covers a larger range
of velocities, corresponds to saltons. The density of particles
in the saltation regime, for the logarithmic profile, is a mono-
tonically decreasing function of height. We attribute this to
the small energy input rate; which goes as qfuf

2, where qf is
the fluid flux.

For the parabolic profile, Fig. 9, the situation is markedly
different. We observe that as the shear velocity increases, the
distribution develops a tail, covering the larger velocities.
The rate of energy input is much higher in the case of the
parabolic profile. In the saltation regime �u��0.8�, it is pos-
sible to distinguish a group of particles moving at a higher
velocity and height, nearly separated from the rest of the
particles. In this sense, the density of particles in the saltation
regime, is very different from that of the logarithmic velocity
profile. This explains the sudden velocity spread at u��0.8.

Figure 10 shows the transverse PDF for the parabolic pro-
file. Similar to the logarithmic profile, once in the saltation
regime the transverse PDF is nearly Gaussian with nearly
zero mean. With increasing u� the Gaussian becomes broader
implying an increase in the granular temperature.

IV. CONCLUSION

In this study, we have presented a simple model for creep-
ing and saltating motion that produces steady sediment trans-
port. We investigated the steady state flux for the parabolic
and logarithmic fluid velocity profiles.

For the logarithmic profile we compared our results with
previous similar studies. Increasing the shear velocity u�
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yielding a=182, b=−0.07, and c=0.5. The dashed line is the fit
using Eq. �11� that gives a�=258, and b�=0.036.
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FIG. 9. The grain longitudinal velocity probability distribution
function for different values of u� for a parabolic profile.
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from the threshold value ut, sediment transport sets in, first
creeping and then for larger u�, saltating. In our system, the
saltating particles can rise up to several times their diameter,
and similar to Ungar and Haff �8� we find that the steady
state flux increases quadratically with shear velocity. The
fact that we recover asymptotically the quadratic relation of
Ungar and Haff is reasonable. Since we did not explicitly
incorporate the shear going as u�

2 in our simulation, this can
be regarded as a consistency check. In addition, our result
Eq. �10� is not exactly as Eq. �8� of Ungar and Haff, and this
can be attributed to their simplifying assumptions about how
the particles impart momentum to the surface.

For the parabolic profile, that models a laminar flow, the
flux rises cubically with increasing shear velocity. We also

find that near the threshold velocity a quadratic expression
fits our data as well as a cubic expression. Typical applica-
tions of our study of the sediment transport by a laminar flow
are in hydraulic engineering. They are also important in the
understanding of ripples and dunes or other pattern forma-
tions; as for example, when studying the pattern formations
in the experiments conducted by Daerr et al. �24�. They have
designed the experiment on a laboratory scale to reproduce a
rich variety of natural patterns, especially intriguing rhom-
boid structures often found on sandy shores. The patterns are
created by a falling water level on an erodible sediment layer
that occurs naturally when the sea retreats from the shore.

The present study of discrete particles of bed-load sedi-
ment transport also helps us predict the creation and evolu-
tion of pattern formations in binary granular mixtures of sand
bed. Also the process of segregation by size and density and
its effects on pattern formation can be explored. The study of
the details of the transport mechanism by turbulent and lami-
nar flow might help us understand the pattern formation not
only on Earth but also other planets such as Mars.

The velocity probability distribution function is a good
measure to estimate the onset of saltation. It would be inter-
esting to study a system large enough so that the grain ve-
locity distribution function can be measured as a function of
height.

ACKNOWLEDGMENTS

Part of this work was carried out while F. Osanloo stayed
at the University of Stuttgart. She wishes to thank the Uni-
versity of Stuttgart for their hospitality and the grant that
made her stay possible.

�1� R. A. Bagnold, The Physics of Blown Sand and Desert Dunes
�Chapman and Hall, London, 1941�.

�2� B. Andreotti, P. Claudin, and S. Douady, Eur. Phys. J. B 28,
321 �2002�.

�3� Y.-H. Zhou, X. Guo, and X. J. Zheng, Phys. Rev. E 66, 021305
�2002�.

�4� K. Nishimura and J. C. R. Hunt, J. Fluid Mech. 417, 77
�2000�.

�5� C. Ancey, F. Bigillon, P. Frey, J. Lanier, and R. Ducret, Phys.
Rev. E 66, 036306 �2002�.

�6� C. Ancey, F. Bigillon, P. Frey, and R. Ducret, Phys. Rev. E 67,
011303 �2003�.

�7� P. R. Owen, J. Fluid Mech. 20, 225 �1964�.
�8� J. E. Ungar and P. K. Haff, Sedimentology 34, 289 �1987�.
�9� P. L. Wiberg and J. D. Smith, J. Geophys. Res. 90, 7341

�1985�.
�10� Z. Jiang and P. K. Haff, Water Resour. Res. 29, 399 �1993�.
�11� K. Lettau and H. Lettau, in Exploring the World’s Driest Cli-

mate, edited by H. Lettau and K. Lettau �Center for Climate
Research, University of Wisconsin, Madison, 1978�.

�12� G. Sauermann, K. Kroy, and H. J. Herrmann, Phys. Rev. E 64,
031305 �2001�.

�13� M. Sorensen, Acta Mech. 1, 67 �1991�.

�14� M. P. Almeida, J. S. Andrade, Jr., and H. J. Herrmann, Phys.
Rev. Lett. 96, 018001 �2006�.

�15� V. Nikora, J. Heald, D. Goring, and I. McEwan, J. Phys. A 34,
L743 �2001�.

�16� F. Charru, H. Mouilleron, and O. Eiff, J. Fluid Mech. 519, 55
�2004�.

�17� B. Andreotti, J. Fluid Mech. 510, 47 �2004�.
�18� S. McNamara and W. R. Young, Phys. Rev. E 53, 5089 �1996�.
�19� Throughout this paper the unit of length is l0=2�10−1 cm,

and the gravitational acceleration of 12l0 / t0
2=490 cm /s2 is ap-

plied to all the particles. This is the acceleration experienced
by a particle with density of 2 g /cm3 in water. The corre-
sponding unit of time is 7�10−2 s.

�20� B. D. Lubachevsky, J. Comput. Phys. 94, 255 �1991�.
�21� S. Luding and S. McNamara, Granular Matter 1, 113 �1998�.
�22� A. Vardy, Fluid Principles �McGraw-Hill, New York, 1990�.
�23� Although the threshold velocities for the two profiles are dras-

tically different, the resulting drag forces �for the top layer�,
using Eqs. �2�–�5�, come out nearly the same for both profiles,
as expected, at the onset of motion.

�24� A. Daerr, P. Lee, J. Lanuza, and E. Clément, Phys. Rev. E 67,
065201�R� �2003�.

o o o o o oooooooooooo
ooooo

ooooo
oooooooooooooooo

ooooooo o o o o o

w

P
D

F

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1
u*=0.3
u*=0.5
u*=1.
u*=1.5

o

FIG. 10. The grain transverse velocity probability distribution
function for different values of u� for a parabolic profile.
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